API Reference
Platform APIs
- Models
- Functions
- Observability
- Knowledge base
- Datasets
- Other
- embeddings
- OpenAI compatibility
embeddings
Create Embedding
Create embeddings for a given string or list of strings
POST
/
embeddings
Copy
Ask AI
from opperai import Opper
opper = Opper(http_bearer="YOUR_API_KEY")
# Create embedding for a single text
single_embedding = opper.embeddings.create(
input="The quick brown fox jumps over the lazy dog",
model="azure/text-embedding-3-large",
)
print(f"Model: {single_embedding.model}")
print(f"Embedding dimensions: {len(single_embedding.data[0]['embedding'])}")
print(f"Usage: {single_embedding.usage}")
# Create embeddings for multiple texts
multiple_embeddings = opper.embeddings.create(
input=[
"What is machine learning?",
"How do neural networks work?",
"Explain artificial intelligence",
]
)
print(f"\nCreated {len(multiple_embeddings.data)} embeddings")
for i, embedding_data in enumerate(multiple_embeddings.data):
print(f"Embedding {i}: {len(embedding_data['embedding'])} dimensions")
Copy
Ask AI
{
"model": "text-embedding-3-large",
"data": {
"embedding": [
0.1,
0.2,
0.3
],
"index": 0
},
"usage": {
"prompt_tokens": 100,
"total_tokens": 100
}
}
Authorizations
Bearer authentication header of the form Bearer <token>
, where <token>
is your auth token.
Body
application/json
Response
200
application/json
Successful Response
The response is of type object
.
Copy
Ask AI
from opperai import Opper
opper = Opper(http_bearer="YOUR_API_KEY")
# Create embedding for a single text
single_embedding = opper.embeddings.create(
input="The quick brown fox jumps over the lazy dog",
model="azure/text-embedding-3-large",
)
print(f"Model: {single_embedding.model}")
print(f"Embedding dimensions: {len(single_embedding.data[0]['embedding'])}")
print(f"Usage: {single_embedding.usage}")
# Create embeddings for multiple texts
multiple_embeddings = opper.embeddings.create(
input=[
"What is machine learning?",
"How do neural networks work?",
"Explain artificial intelligence",
]
)
print(f"\nCreated {len(multiple_embeddings.data)} embeddings")
for i, embedding_data in enumerate(multiple_embeddings.data):
print(f"Embedding {i}: {len(embedding_data['embedding'])} dimensions")
Copy
Ask AI
{
"model": "text-embedding-3-large",
"data": {
"embedding": [
0.1,
0.2,
0.3
],
"index": 0
},
"usage": {
"prompt_tokens": 100,
"total_tokens": 100
}
}
Assistant
Responses are generated using AI and may contain mistakes.